<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><br class=""><div><blockquote type="cite" class=""><div class="">On Jun 23, 2016, at 15:19, Patrick Pijnappel <<a href="mailto:patrickpijnappel@gmail.com" class="">patrickpijnappel@gmail.com</a>> wrote:</div><br class="Apple-interchange-newline"><div class=""><div dir="ltr" class=""><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div style="font-size:13px" class="">- I remain unconvinced that defining an Arithmetic that includes both exact and floating-point numbers is a good idea. All of the arguments from Swift 1 and 2 about why we didn't include this still seem relevant. To phrase it in generic programming terms, what algorithm would be generic over Arithmetic?</div></blockquote><div class=""><br class=""></div><div class="">E.g. generic point/size/rect types.</div></div></div></blockquote><div><br class=""></div><div>Um. I get that there are useful algorithms generic over floating-point vectors, and also useful algorithms generic over integer vectors. I’m still not sure what algorithms are generic over floating-point values (of any arity) and integers (of any arity).</div><div><br class=""></div><div>Jordan</div><div><br class=""></div></div></body></html>