<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">An, now I see what you mean. You are right, P ::= ∃ t : P . t is a constrained existential type defining a subtype relationship.<div class="">Thanks for enlightening me!<br class=""><div class=""><br class=""></div><div class="">I haven’t perceived a protocol as an existential up to now, probably because my understanding has come from Haskell where subtyping does not exists and where therefore a hidden unbound type parameter plays a central role (see definitions below) which has made me believe that an associated type is necessary. But for simple protocols this role is indeed taken by the conforming type. The difference is that this is equivalent to subtyping whereas associated types (as another form of hidden unbound type parameters) are not, resulting in two kinds of protocols.</div><div class="">Is there another terminology to distinguish between those two kinds?</div><div class=""><br class=""></div><div class="">-Thorsten</div><div class=""><br class=""></div><div class=""><br class=""></div>"Existential types, or 'existentials' for short, are a way of 'squashing' a group of types into one, single type. […] </div><div class="">data T = forall a. MkT a“ </div><div class="">(<a href="https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types" class="">https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types</a>)<div class=""><br class=""></div><div class="">"Existential quantification hides a type variable within a data constructor.“</div><div class="">(<a href="https://prime.haskell.org/wiki/ExistentialQuantification" class="">https://prime.haskell.org/wiki/ExistentialQuantification</a>)<br class=""><div class=""><br class=""></div><div class="">"For example, the type "T = ∃X { a: X; f: (X → int); }" describes a module interface that has a data member named a of type X and a function named f that takes a parameter of the same type X and returns an integer. […] Given a value "t" of type "T", we know that "t.f(t.a)" is well-typed, regardless of what the abstract type X is. This gives flexibility for choosing types suited to a particular implementation while clients that use only values of the interface type—the existential type—are isolated from these choices.“</div><div class="">(<a href="https://en.wikipedia.org/wiki/Type_system#Existential_types" class="">https://en.wikipedia.org/wiki/Type_system#Existential_types</a>)</div><div class=""><br class=""></div><div class=""><div class=""><br class=""></div><div class=""><br class=""><div><blockquote type="cite" class=""><div class="">Am 27.05.2016 um 19:36 schrieb John McCall <<a href="mailto:rjmccall@apple.com" class="">rjmccall@apple.com</a>>:</div><br class="Apple-interchange-newline"><div class=""><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""><blockquote type="cite" class=""><div class="">On May 25, 2016, at 7:07 AM, Thorsten Seitz via swift-evolution <<a href="mailto:swift-evolution@swift.org" class="">swift-evolution@swift.org</a>> wrote:</div><div class=""><div class=""><div class="">This is unfortunate, because then the meaning of "existential" and "non-existential" in Swift are just the opposite of their respective meaning in standard terminology :-(</div></div></div></blockquote><div class=""><br class=""></div>I don't know what you mean by this. The standard terminology is that an existential type is one that's directly existentially-quantified, e.g. ∃ t . t, which is essentially what a Swift protocol type is:</div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""> P ::= ∃ t : P . t</div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""> P.Type ::= ∃ t : P . t.Type</div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class="">etc. Language operations then implicitly form (erasure) and break down (opening) those qualifiers in basically the same way that they implicitly break down the universal quantifiers on generic functions.</div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""><br class=""></div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class="">If you're thinking about Haskell, Haskell's existential features are carefully tied to constructors and pattern-matching in part because erasure is a kind of implicit conversion, which would not fit cleanly into Haskell's type system. (Universal application also requires an implicit representation change, but that doesn't need to be reflected in H-M systems for technical reasons unless you're trying to support higher-rank polymorphism; I'm not up on the type-checking literature there.)</div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""><br class=""></div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class="">John.</div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""><br class=""></div><div style="font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class=""><br class=""><blockquote type="cite" class=""><div class=""><div class=""><div class=""><br data-mce-bogus="1" class=""></div><div class="">-Thorsten<br data-mce-bogus="1" class=""></div><div class=""><br data-mce-bogus="1" class=""></div><div class=""><br class="">Am 25. Mai 2016 um 14:27 schrieb Brent Royal-Gordon <<a href="mailto:brent@architechies.com" class="">brent@architechies.com</a>>:<br class=""><br class=""><div class=""><blockquote type="cite" class=""><div class="msg-quote"><div class="_stretch"><span class="body-text-content"><blockquote type="cite" class="quoted-plain-text">AFAIK an existential type is a type T with type parameters that are still abstract (see for example<span class="Apple-converted-space"> </span><a href="https://en.wikipedia.org/wiki/Type_system#Existential_types" data-mce-href="https://en.wikipedia.org/wiki/Type_system#Existential_types" class="">https://en.wikipedia.org/wiki/Type_system#Existential_types</a>), i.e. have not been assigned concrete values.</blockquote><br class="">My understanding is that, in Swift, the instance used to store something whose concrete type is unknown (i.e. is still abstract), but which is known to conform to some protocol, is called an "existential". Protocols with associated values cannot be packed into normal existentials because, even though we know that the concrete type conforms to some protocol, the associated types represent additional unknowns, and Swift cannot be sure how to translate uses of those unknown types into callable members. Hence, protocols with associated types are sometimes called "non-existential".<br class=""><br class="">If I am misusing the terminology in this area, please understand that that's what I mean when I use that word.<br class=""><br class="">--<span class="Apple-converted-space"> </span><br class="">Brent Royal-Gordon<br class="">Architechies<br class=""><br class=""></span></div></div></blockquote></div></div></div>_______________________________________________<br class="">swift-evolution mailing list<br class=""><a href="mailto:swift-evolution@swift.org" class="">swift-evolution@swift.org</a><br class=""><a href="https://lists.swift.org/mailman/listinfo/swift-evolution" class="">https://lists.swift.org/mailman/listinfo/swift-evolution</a></div></blockquote></div></div></blockquote></div><br class=""></div></div></div></div></body></html>